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Abstract: Results of finite-amplitude convection experiments in a rotating spheri-
cal shell are presented. Water (Prandtl number P = 7) and liquid gallium (P = 0.027)
have been used as working fluids. In both liquids, convective velocities could be
measured in the equatorial plane using an ultrasonic Doppler velocimetry technique.
The parameter space has been systematically explored, for values of the Ekman and
Rayleigh numbers E > 7 10−7 and Ra < 5 109. Both measured convective veloc-
ity and zonal circulation are much higher in liquid gallium than in water. A scaling
analysis is formulated, which shows that higher convective velocities are an effect of
the low Prandtl number in liquid gallium, and that higher zonal flows can be ex-
plained through a Reynolds stress mechanism. The Reynolds numbers in gallium
(Re = 250 − 2000) are higher indeed than in water (Re = 25 − 250). An inertial
regime sets up at high Re, in which kinetic energy does not dissipate at the scale
of convective eddies and is transferred up to the scale of the container, where it is
dissipated through Ekman friction of zonal flow. This upwards energy transfer can
be seen as an effect of quasigeostrophic turbulence. Applying the scaling relations to
an hypothetic non-magnetic flow in the Earth’s core yields Reynolds numbers of the
order of 108, in fair agreement with values required for dynamo action, convective
velocities of order 10−3 m/s, zonal flow of similar amplitude, and eddy scales as low
as 10 km.
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Unit Definition water at 20oC liq. gallium at 30oC Earth’s Core
ρ kg/m3 Mean density 1000 a6095 ≈ 104

ν m2/s Kinematic viscosity 10−6 a2.95 10−7 c ≈ 7 10−6

α K−1 Thermal expansivity 2 10−4 b1.26 10−4 c ≈ 10−5

k J/(s.m.K) Thermal conductivity 0.59 b30 c ≈ 30
Cp J/(kg.K) Specific heat 4180 a381.5 c ≈ 800
κ m2/s Thermal diffusivity 1.4 10−7 1.3 10−5 ≈ 4 10−6

σ 1/(Ωm) Electrical conductivity − a3.87 106 c ≈ 106

λ m2/s Magnetic diffusivity − 0.21 ≈ 1
re m Outer Radius 0.11 0.11 3.48 106

ri m Inner Radius 0.04 0.04 1.22 106

D m Shell gap 0.07 0.07 2.26 106

Ω rad/s Rotation rate 20− 80 40− 80 7.29 10−5

gD m/s2 Gravity at radius D 30− 480 90− 480 7
∆T K Temperature difference 0− 25 0− 30 ?

Table 1: Physical parameters and geometric constants of the experiment. a: Sabot
and Lauvray (1995); b: Okada and Ozoe (1992); c: estimated from properties of liquid
iron at melting point given in Stacey (1992).

1 Introduction

It is widely believed that the self-sustained dynamo of the Earth draws its energy
from thermal (and solutal) convection in its liquid metallic outer core. The dynamo
mechanism requires that the advection of the magnetic field by the convective flow
be much larger than its diffusion. This means that the magnetic Reynolds number
Rem = UD/λ (where U is a typical velocity, D the thickness of the liquid core, and
λ the magnetic diffusivity, see table 1) has to be larger than about 100. In liquid
metals, the ratio of magnetic diffusivity over kinematic viscosity ν is of the order of
106, so that the usual Reynolds number Re = UD/ν is expected to be of the order
of 108. The convective flow responsible for the dynamo is therefore probably in a
very turbulent state. However, it is also very much constrained by the influence of
rotation, since the Coriolis force is one of the dominant forces in the system. This has
given birth to several fundamental investigations of the properties of convection in a
rapidly rotating sphere.

This type of convection is characterized by a small Ekman number E = ν/ΩD2,
where Ω is the rate of rotation of the Earth, see table 2. The Rayleigh number Ra
measures the vigor of convection. The dominence of rotation yields two major effects:
convective cells take the shape of vortex columns aligned with the axis of rotation
as a consequence of the Taylor-Proudman constraint, and the onset of the convective
instability occurs for a larger Rayleigh number than in the non-rotating case, demon-
strating the stabilizing effect of rotation in this configuration. These results were
first established from the theoretical analysis of the onset of convection in a rapidly
rotating spherical fluid shell (Roberts, 1968; Busse, 1970). In the asymptotic limit
E → 0, these studies also showed that the width of the columns scales as E1/3, with
dissipation occuring in the bulk of the liquid, and the critical Rayleigh number Rac
increases as E−4/3. The analysis of Busse for an annulus with tilted upper and lower
boundaries highlighted the role of the tilt in controling both the above scalings and
the azimuthal structure of the cells: as liquid columns migrate from the inner bound-
ary of the model towards the outer boundary, they have to contract in the direction of
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Number Name Exp. water Exp. gallium Earth’s core

Ra =
α∆TgDD

3

κν
Rayleigh number 3Rac − 80Rac Rac − 10Rac ?

E =
ν

ΩD2
Ekman number 10−5 − 10−6 10−6 − 10−7 10−15 − 10−13

P =
ν

κ
Prandtl number 7 0.022− 0.027 0.1− 1

Table 2: Dimensionless parameters for the study of thermal convection. Rac is the
critical Rayleigh number.

the rotation axis and elongate in the perpendicular directions. Contracting columns
acquire a negative vorticity, while columns moving inwards acquire positive vorticity.
This is the basic mechanism at the origin of Rossby waves, which propagate in the
prograde azimuthal direction. At the onset of convection, the convective columns are
thus inclined in the prograde direction, by an angle that depends on the curvature of
the boundaries.

These theoretical findings have been largely confirmed by the pionnering experi-
mental studies of Busse and co-workers (Busse and Carrigan, 1976a,b; Carrigan and
Busse, 1983; Chamberlain and Carrigan, 1986), and also by the numerical analysis of
the onset of convection in spherical shells (Zhang, 1992). However, it became clear
that discrepancies existed between the numerical results and the predictions of the
local theory of Busse, especially when comparing the critical Rayleigh number for
liquids with a small Prandtl number (Zhang, 1992). This has to do with the fact that
the preferred lateral dimension of the columns (of order E1/3) is small with respect to
the shell thickness. It is only recently, that Jones et al. (2000) could solve the problem
and propose a fully consistent asymptotic approach.

The understanding of marginal stability analyses allows to explore the field of finite
amplitude convection, which has been investigated both in numerical simulations
(Sun et al., 1993; Cardin and Olson, 1994; Ardes et al., 1997; Tilgner and Busse,
1997; Grote et al., 2000) and in laboratory experiments (Cardin and Olson, 1992;
Cordero, 1993; Sumita and Olson, 2000). Recent numerical models describe a variety
of boundary conditions, and achieve Prandtl numbers of order 1, fairly low Ekman
numbers (E = 10−5), and Rayleigh numbers up to 50 times critical. Experiments are
usually done with water (P = 7), for Ekman numbers down to 10−6 and Rayleigh
numbers up to 100 times critical. In all cases, the main characteristics presented
above are retained: columnar vortices aligned with the axis of rotation, of small lateral
extent, form near the inner sphere and travel around it. However, nonlinear convection
also exhibits a number of distinct features that were revealed by these studies: Rossby
waves turn into quasi-periodic plumes originating at the inner boundary, still tilted
in the prograde direction. The pattern still drifts, but this is not the consequence of
wave propagation anymore, but of a real zonal circulation that can be strong when
compared to convective velocity. A transition to chaotic (in the sense of unpredictable,
highly time dependent, statistically stationary) regimes has been found for Ra/Rac
as low as 10 when using fluids with a Prandtl number around 1.

In an effort to mimic the effect of very small Ekman numbers, Grote et al. (2000)
examined the case of a stress-free outer sphere. Very large zonal velocities were ob-
served, which yield to intermittency as the zonal flow tends to wipe out the convective
structures from which it draws its strength. It would be interesting to see if this be-

3



havior is really characteristic of low Ekman number convection even when dissipation
occurs in the boundary layers rather than in the interior of the fluid. This appears
to be a difficult challenge for numerical modeling, since it is generally accepted that
the computer power needed to resolve nonlinear effects such as turbulence grows with
the cube of the highest frequency to resolve, but in the rotating case it is even worse,
because of the existence of active thin boundary layers (thickness O(E1/2)). Approx-
imations have been worked out to extend the parameter range, among which the use
of hyperdiffusivities (Glatzmaier and Roberts, 1995), and a quasigeostrophic model to
make the problem two-dimensional (Cardin and Olson, 1994). This latter approach
is particularly promising, but, as we shall see later, care must be taken to model the
friction in the boundary layer located near the outer boundary of the model in an
appropriate way.

The lowest Ekman numbers have been reached in laboratory experiments. For
fully developped convection, vortices are found to occupy a large part of the spherical
shell. Convective plumes originate from both the inner and the outer boundaries.
Sumita and Olson (2000) observed a sizeable retrograde zonal velocity, and showed,
in the continuation of the work by Cardin and Olson (1994), that it could be explained
with a simple model of Reynolds stresses, implying that inertial effects were present.

In any case, the extrapolation of the results available so far to core conditions
requires sound scaling relationships. Only a few studies have addressed this question
(Cardin and Olson, 1994; Zhang and Gubbins, 2000; Jones, 2000). To be reliable,
these relationships have to be derived in the proper regime. However, it appears that
the Reynolds number in these studies is never larger than about 100, meaning that
viscosity remains an important ingredient in the interior of the shell, in contrast to
what is expected in the core. This problem is the main motivation for our study. We
have performed laboratory convection experiments in a rapidly rotating sphere. In
contrast to previous studies, which focused on the characterization of the convective
structures using optical visualization methods and local temperature records, we ob-
tain quantitative velocity measurements using a Doppler ultrasonic technique. Both
radial and zonal velocity profiles have been measured, and we have determined how
the retrieved characteristic velocities scale with the controlling parameters E and Ra.
However, the main originality of our study is the use of two different working liquids:
water (P = 7) and gallium (P = 0.027). Larger inertial effects are expected for gal-
lium because of its low Prandtl number. Indeed, the measured radial velocities ur
indicate that the maximum Reynolds number attained is of the order of 250 for water
and 2000 for gallium. A striking observation is that zonal velocities are much larger
in gallium than in water. Indeed, the ratio uθ/ur, where uθ is the zonal velocity, can
exceed 2 in the gallium experiments whereas it remains lower than 0.7 in the water
experiments. These two observations suggest that an inertial regime has been reached
in gallium. We derive scaling relationships for this regime and show that they fit our
measurements. In particular, we show that the large zonal velocities measured for
gallium result from a balance between Reynolds stresses in the interior of the shell
and viscous stresses in the Ekman layers of the outer boundary.

We believe that the scaling relationships we obtain permit a better extrapolation
to core conditions. Of course, the presence of a magnetic field in the core is likely to
affect the force balance to a considerable extent (Chandrasekhar, 1961; Brito et al.,
1995; Aurnou and Olson, 2001), but we think that our results without a magnetic
field are an important step towards a better understanding of the geodynamo.
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In the next section we describe the experimental set-up. In section 3 we determine
numerically the critical values and discuss the bidimensionality of the flow. In section
4 we present the velocity profiles for water and gallium, discuss their properties and
show how we extract a set of scalar data to be used in the scaling analysis. The
evolution of these data as a function of the control parmeters E, Ra/Rac and P is
exposed in section 5. In section 6 we propose a scaling model, which is found to
provide a good fit to the data. We discuss the implications of our results in section 7
and propose an extrapolation to the core.

2 Experimental set-up

The set-up (figure 1, and table 1) is a traditional centrifugal gravity experimental
device, as pionneered by Busse and Carrigan (1976b): a sphere of radius 110 mm,
filled with either water or gallium, can be spun up to speeds of order 1000 rpm by a
1.4 kW brushless motor, with a stability better than 0.1%. The sphere is transversed
by a cylinder of radius 40 mm, coaxial with the rotation axis. The aspect ratio
between boundaries is therefore 0.36.

The inner cylinder is made of copper, with the outer 3 mm replaced by polyethylene
everywhere except for the 110 mm-high central part, in order to simulate a ”central”
heat flux. Two distinct spheres have been built: a lexan sphere for use with water,
and a copper sphere for use with gallium. This choice has been guided by several
requirements: one is to perform optical visualisations in water (see figure 3), one other
is to use an excellent heat conductor with gallium, and the third is to obtain a good
transmission of ultrasonic waves, taking care of the acoustic impedance adaptation.

The inner temperature (T1) is fixed by circulating cold water in six channels within
the inner cylinder. The cooling power of the device is 1 kW. Two rotary joint units
allow the cold water to flow from the Earth-bound frame into the rotating frame. The
whole device is installed in a thermostatic chamber, whose function is to set the hot
external temperature (T2). With gallium we had to complete the set-up with a 4 kW
electric heater wired around the copper sphere. The heat transfer from the surface of
the sphere is indeed not large enough to absorb the large quantity of heat conducted
or advected in the liquid metal. The thermostatic chamber then helps maintaining
gallium above its solidification point (29.8oC).

The imposed temperature gradient is opposite to that of the Earth’s core because
the centrifugal gravity is opposite to the radial gravity of a self-gravitating body.
Doing so, one obtains destabilizing buoyancy forces. The difference between the
cylindrical symmetry of gravity in the experiment versus spherical symmetry for the
Earth has little importance, since in the asymptotic quasigeostrophic state, only the
component of gravity perpendicular to the rotation axis plays a dynamic role, the
other component being balanced by a pressure gradient (Busse and Carrigan, 1976b;
Glatzmaier and Olson, 1993).

Electric signals are passed through slip rings. A set of 10 analogic amplifiers
is mounted in the rotating frame, to allow weak signals from thermocouples to be
amplified before passing through the slip rings. Filling and emptying operations
of the fluid shell are done under argon atmosphere when using gallium, to prevent
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Figure 1: Sketch of the convection device.
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oxydation.

The device has been instrumented for thermal measurements: two platinum thermo-
resistive probes record the temperatures of the inner cylinder and outer sphere. Typi-
cal temperature variations at these boundaries are found to be less than 0.2 K during
a run. Thermocouples (Iron/Constantan in water, and Platinum/Constantan in gal-
lium, the liquid metal providing electrical contact) record temperature fluctuations
(less than 2 K) at the surface of the inner cylinder, 25 mm above and below the
equator.

The originality of our experiment is the implementation of ultrasonic pulsed Doppler
velocimetry. This technique relies on echoes backscattered by small inhomogeneities
of the fluid. From the time delay and Doppler shift of echoes can be retrieved the
reflector’s position and component of velocity along the ultrasonic beam. One thus
obtains profiles of flow velocity (Takeda, 1986). Brito et al. (2001) validated the tech-
nique for use with water and gallium, measuring zonal velocities in a prescribed vortex
flow. We use the DOP 1000 velocimeter of Signal Processing with 4 MHz cylindrical
ultrasonic transducers (TR30405) of length 8 mm and diameter 8 mm. The main
challenge is to measure convective velocities (of a few millimeters per second) in a
sphere that is rotating at several hundreds of revolutions per minute. This is achieved
by mounting the transducers in the rotating frame: they are embedded into the outer
sphere in one-end machined holes, at equatorial position, and the electric signal is
passed through the slip-rings. This set-up gave excellent results, the main limitation
being the contamination of the signals with motor-related electric noise as they pass
through the slip-rings.

The top view of figure 2 displays the possible locations of the transducers. The
radial beam allows us to retrieve the radial velocity field as a function of radius and
time. The lateral beam enters the sphere at a normal angle of 40o and is refracted to
normal angles of 24.5o and 21.5o respectively by the lexan/water and copper/gallium
interface. The closest approach of the beam to the inner cylinder is 5 mm in water and
1 mm in gallium. This profile contains a combination of radial and zonal velocities,
from which the latter can be extracted (see appendix for exact values of angles and
procedure for the retrieval of mean zonal flow).

Another difficulty is the seeding of the liquids in order to obtain sufficient echoes.
Neutral buoyancy is crucial, because of the large centrifugal forces present in the
rotating frame. In water, the best results were obtained with pine pollen particles of
typical dry size 20 µm. These particles fill with water and become neutrally buoyant
(B. Andreotti, personal communication, 2000). In gallium we used Zirconium Boride
with density 6.17, close to that of gallium, and a size of order 50 µm. It is also
likely that gallium oxide particles act as inhomogeneities. In the gallium experiments,
boundaries such as the copper part of the inner cylinder and the copper sphere were
coated with a thin cataphoretic film, in order to ensure wet contact with gallium, and
easy removal of oxides that scatter the ultrasonic beam (Brito et al., 2001).

Note that the use of ultrasonic Doppler velocimetry was dictated by the need
to measure velocities in opaque liquid gallium. However, even in transparent water
where visualization is possible, the quantitative information it provides is valuable
for the determination of scaling laws as presented in this article. By using a set of
several neighbouring multiplexed transducers, it is also possible to investigate the
local velocity structure of the convective flow.
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P E Ω (rpm) Rac ∆T (K) ωc τc (s) mc

7 9.7 10−6 200 9.6 106 0.65 1.3 102 246 17
7 4.8 10−6 400 2.3 107 0.39 2.1 102 145 22
7∗ 3.3 10−6 600 4 107 0.30 4.3 102 114.2 25
7∗ 2.4 10−6 800 5.8 107 0.25 5.2 102 92.3 28
0.027 1.5 10−6 400 1.2 107 8.5 1.2 104 8.6 15
0.027 9.7 10−7 600 1.9 107 6.0 1.7 104 6.3 17
0.027 7.3 10−7 800 2.7 107 4.8 2.0 104 5.2 19

Table 3: Critical values from numerical simulations. Stars denote extrapolated data.

3 Basic properties of the flow.

In this section, we discuss properties of the flow which are needed for the forthcoming
analysis. This includes a determination of the threshold of convection, a check of the
two-dimensional character of the flow, with an assessment of the role of thermal wind.

3.1 Onset of convection

Our experimental set-up was built to study fully developed convection. It is not
well suited for the investigation of the onset of convection. In order to scale our
measurements, we need to determine the critical Rayleigh number. Therefore nu-
merical marginal stability simulations have been performed, with a 3D code from
Dormy et al. (1998), validated through the Dynamo Benchmark initiative currently
in progress (Christensen et al., 2001). We have solved the eigenvalue problem by it-
eration of the linear part of the code. The model contains a spherical inner core with
0.35 aspect ratio, no-slip and fixed temperature boundary conditions, radial gravity.
Solutions have been computed for two values of the Prandtl number : 7 (water) and
0.027 (liquid gallium). Ekman numbers as low as 4.9 10−6 and 4.9 10−7 have been
reached respectively for P = 7 and P = 0.027. In order to reach the experimen-
tal Ekman number values, some extrapolation has been done for P = 7, using the
asymptotic laws.

Table 3 summarizes the numerical results. Ω is the dimensional rotation rate, ∆T
the dimensional temperature difference, mc is the critical azimuthal wavenumber,
ωc is the non-dimensional critical pulsation of the Rossby wave (the time scale is
D2/ν), and τc its dimensional period. Note that all the numerical experiments predict
that flow is two-dimensional indeed in these low-Ekman number situations. At E =
9.7 10−6 in water we have experimentally bracketed the critical temperature difference
using temperature signals on thermocouple probes: 0.8 K < ∆Tc < 1.2 K, which is
somewhat higher than the numerical value. The discrepancy probably has to do with
the difference in geometry of the inner boundary, and to the presence of thermal
wind, unless the sensitivity of the method is not good enough to access the threshold
of convection. Critical values used in this manuscript are always those derived from
the numerical simulations.

9



3.2 Vertical structure of the flow

All numerical simulations of the convection onset have shown that because of the
Proudman-Taylor constraint, which governs the low-Ekman number situation we con-
sider, the convective vortices are columns aligned with the axis of rotation. However,
z-invariance may be destroyed by the increasing buoyancy forces at higher Ra/Rac,
and by thermal wind, which is not present in the numerical simulations, but plays a
role in the experiment, due to the fact that the gravity equipotentials are not parallel
to the isothermal surfaces (Busse, 1970).

Vertical invariance of the flow has been checked optically in all experiments per-
formed in water, as illustrated by the photograph of figure 3. Vertical white lines are
due to the alignment of Kalliroscope flakes oriented by the convective columns. In
gallium, this type of direct visualization is not possible. We therefore rely on the tem-
perature measurements displayed in figure 3. The 200 seconds-long records are from
two thermocouples located at the surface of the inner cylinder, 25 mm above and be-
low the equator in the vertical z direction. The two signals are strongly correlated over
a very long timescale, indicating that temperature is advected by a velocity field with
low vertical shear. Temperature measurements in water yield the same behaviour.
Therefore, we are confident that all the velocity profiles measured in the equatorial
plane by ultrasonic Doppler velocimetry are representative of the full velocity field,
apart from boundary layers.

Next we turn to thermal wind. The zonal velocity induced by thermal wind uth

is governed by the following equation (Busse, 1970):

2(Ω · ∇)uth = α∇T × gcen

where gcen = Ω2r is the centrifugal gravity field. Integrating along a vertical line at
constant r yields, for the equatorial value of thermal wind:

uth = −α∆TrΩr

2
eθ

where eθ is the zonal unit vector and ∆Tr is the temperature difference between the
spherical external boundary and the equator at radius r, apart from viscous boundary
layers. Thermal wind is retrograde if the outer sphere is hotter than the inner cylinder,
i.e. in the case of an adverse (destabilizing, convective) temperature gradient. An
estimate in water using α = 2 10−4 K−1 (table 2), ∆Tr = 15 K, Ω = 400 rpm,
and r = 5 cm yields a value of uth = 3.2 mm/s. With a 15 K adverse temperature
difference imposed between the boundaries, we have measured zonal velocities using
the lateral Doppler probe and found a retrograde flow of only 1 mm/s at r = 5 cm.
Moreover, thermal wind should induce vertical shear of convection columns, and this
has not been observed.

Another estimate in gallium using α = 1.26 10−4 K−1, ∆Tr = 15 K, Ω = 400
rpm, and r = 5 cm yields a value of uth = 2 mm/s. Thermal wind should be smaller
indeed in gallium, due to a smaller thermal expansion coefficient. With an adverse
temperature gradient of 15 K, we have measured a retrograde flow of 2.7 mm/s at
r = 5 cm, which is, in contrast, higher than the water value. To estimate the thermal
wind part of this flow, we have performed the same experiment, with a reverse (stable)
temperature gradient of 15 K, and therefore no convection. This yields a prograde
flow of only 1 mm/s.
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Figure 3: Up: Shear structures visualized in water using Kalliroscope flakes, in a
plane containing the rotation axis, close to the inner cylinder. Ekman number is
E = 9.7 10−6, Rayleigh number is 4.2 times critical. Down: vertical correlations
between two thermocouple probes located 5 cm away on the inner cylinder, done in
gallium. Ekman number is E = 7.3 10−7, Rayleigh number is 5.0 times critical.
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In our set-up, thermal wind tends to be smaller than theoretical estimates using
the full temperature difference. We therefore conclude that isothermal surfaces are
more cylindrical than expected. This can be explained by the presence of the inner
cylinder. Note that convection, when present, also tends to give a cylindrical shape
to isothermal surfaces. Moreover, in the gallium case, thermal wind in the reverse
situation is only one third of zonal circulation in the adverse situation. From this we
conclude that thermal wind is not the predominant driving mechanism for the zonal
circulations we observe.

4 Velocity profiles

Results reported in this section summarize the velocity measurements obtained in
sequence experiments made at various Ekman and Rayleigh numbers, in both water
and gallium. Ekman numbers we have reached in water are E = 9.7 10−6 (motor
speed of 200 rpm) down to E = 2.4 10−6 (800 rpm), and in liquid gallium they are
E = 1.5 10−6 (motor speed of 400 rpm) down to E = 7.3 10−7 (800 rpm).

Experimental radial velocity functions have been mapped in a time-depth color-
contoured representation (see figure 4.). X-axis is time in seconds, Y-axis is distance
in millimeters (the sphere is at Y = 0 mm and the inner cylinder at Y = 70 mm).
Velocity is expressed in millimeters per second. Color red stands for a velocity flow-
ing away from the probe, i.e towards the inner cylinder. The transducer sees a radial
velocity function changing with time, assumed to be associated with vortices in the
equatorial plane, drifting across the beamline under the influence of either wave prop-
agation or zonal flow as shown in the sketch in figure 5. For a stationary or periodic
flow, the time axis could therefore be seen as a (deformed) lateral angle axis. Ultra-
sonic Doppler velocimetry is not perfect near boundaries. Boundary layers are not
resolved, and multiple echoes due to an acoustic impedance contrast between sphere
and fluid saturate part of the signal, which is lost near the sphere. This is especially
true with the gallium experiment in figure 4.4 where the first 25 mm of the profile is
lost.

Figure 4.1 shows a pattern obtained for Ra = 4.2 Rac in water. The experiment
corresponds to the photography of figure 3. The velocity amplitude is very small
(< 1 mm/s) and it is difficult to extract the velocity signal from noise for lower Ra
number. Convection tends to be stronger in the vicinity of the inner cylinder. At any
depth, we can appreciate a time oscillation between positive and negative velocity
associated with the presence of thermal vortices. Its typical period (between 150 and
200 s) is close to 246 s, the period predicted for the Rossby wave at the onset of
convection (see table 3). Moreover, we observe tilted bands approaching the inner
cylinder when time goes on. This tilt could be explained by the prograde propagation
of vortices spiralled in the prograde direction. For experiment 4.1, in contrast, a
low retrograde mean zonal flow of 0.1 mm/s has been measured using the lateral
Doppler probe. These observations suggest that the Doppler diagram 4.1. should be
interpreted mostly in terms of the propagation of a Rossby wave. The departure from
criticality induces loss of periodicity in the wave (vacillating, superposition).

In figure 4.2, Ra is higher up to 22.2 times critical while the Ekman number has
been kept constant. The pattern exhibits several significant changes. Periodicity is
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Figure 4: Time-depth radial velocity patterns. Velocities are expressed in millimeters
per second. 1: performed in water, with Ra/Rac = 4.2, E = 9.7 10−6; 2: performed
in water, with Ra/Rac = 22.2, E = 9.7 10−6; 3: performed in water, with Ra/Rac =
26.6, E = 4.8 10−6; 4: performed in liquid gallium, with Ra/Rac = 3.2, E = 1.5 10−6.
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now completely lost, characterictic time scales are shorter (< 50 s), tilts are different,
typical velocities are larger, the distribution of radial sizes has broadened. We have
clearly left the pseudo-periodic state of thermal Rossby waves to jump into a fully
developed state of convection. In this case, a stronger retrograde zonal flow of 0.5
mm/s has been measured, using the lateral Doppler probe. The importance of zonal
advection has therefore grown from case 4.1 to case 4.2. On figure 4.3, the Ekman
number is lowered whileRa/Rac remains comparable. The state of convection remains
the same, but velocities, sizes and durations have changed. The evolution of these
characteristics with controlling parameters is discussed in next section.

Pattern 4.4 presents an experiment performed in liquid gallium, Ra/Rac is 3.2, a
value which is similar to the conditions of pattern 4.1, and Ekman number is 1.5 10−6.
Vortices attached to the inner cylinder have grown in radial size. Bands are less tilted,
and this suggests that the convective structures are more radial. In that case, the
zonal flow (5 mm/s) is very large and we cannot neglect its influence on the time
analysis. The lateral size of the columns is presumably larger than in the water case.
Anyhow, the gallium experiments never show quasiperiodic flow like in water (pattern
4.1) even for the lowest ratio Ra/Rac. We infer this is the main effect of the change
when lowering the Prandtl number; the large amplitude of the velocities lead the
system to turbulence just above the onset of convection.

The local organization of developed convective flow seems rather intricate on di-
agrams 4.1–4.4, and we therefore first concentrate on the study of its time averaged
mean properties. For the radial velocity field of experiments 4.3 and 4.4, we plot (upper
plots of figure 6) the time-averaged standard deviation of velocity ũr against radius
(see appendix for definitions of averaging operators used in this study). The error bars
account for the reproducibility of measurements, and for uncertainties introduced by
the centrifugation of seeding particles.
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At a given radius r, we also study the distribution δr(r) defined as:

δr(r) =


(r′i − ri), 1 < i < N,





ũr(r
′
i, ti) = 0

ũr(ri, ti) = 0

r′i > r > ri

∀y ∈]ri, r
′
i[, ũr(y, ti) 6= 0


 .

N is the total number of profiles acquired during a run (see appendix) and ti the
time of profile i. δr is therefore the distribution of radial cell sizes around r. At any
given depth, the histogram of δr is built. Figure 14 of the appendix shows an example
of such an histogram. The lower plots of figure 6 represent the mean δr of δr as a
function of r. The error bar is the standard deviation δ̃r of δr , and it accounts for the
variety of cell sizes present around a given radius.

Figure 6 shows that when convection is developed, the instability extends through-
out the space between boundaries, but most of the energy is located near the inner
cylinder. The flow slows down, and vortex size decreases, as r increases (see section
6 for an interpretation). Figure 7 is a plot of mean zonal velocity uθ retrieved using
the azimutal probe (see appendix for details). Error bars on uθ are of the same origin
as those on ũr. Experimental parameters are close to those of patterns 4.3 and 4.4.
The two zonal flows are retrograde near the inner cylinder. In most experiments done
with gallium, we could appreciate a weak prograde zonal flow at larger radius. At
even larger radius in gallium (broken lines in figures 6 and 7) energy peaks due to the
impedance contrast between copper and gallium blind the ultrasonic measurement.

Zonal flow in gallium is comparable to convective flow, whereas in water it is
lower. In the latter case, the observed radial variations are most probably due to an
incomplete averaging of convective signal, and therefore not significant. The gallium
profile clearly shows a maximum velocity close to the inner cylinder, coincident with
the maximum of convective velocity, and relaxes to zero on the typical size of convec-
tion cells. Nonzero mean zonal flow can be associated to geostrophic motion along
cylinders of constant r, and with this interpretation, two scales naturally appear in
the flow: the scale of columns (which will be denoted as convective scale), and the
scale of the container for geostrophic motion.

5 Evolution with control parameters.

The radial shape of time averaged mean properties, seen in the previous section, is a
robust feature of the experiments we have conducted. We can infer that this shape
scales homothetically with control parameters in the range covered by experiments.
We therefore can separate the study of radial dependence in one hand, and the study
of the homothetic scaling of a particular point of the profiles in the other hand. A
model for radial dependence will be given in the next section. In this section we
concentrate on the scaling of variables picked up at a given radius. We chose the
radius rmax where the flow is stronger (maximum of ũr), to increase the signal to
noise ratio.

This way we follow the evolution of ũr(rmax), −uθ(rmax), and δr(rmax), with
error bars as defined above, with the controlling parameters E, Ra/Rac, P . We also
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follow the evolution of the mean time ∆t(rmax) elapsed between two zeros of the
radial velocity function, at the given radius rmax, with error bars corresponding to
∆̃t(rmax).

Figure 8 displays the resulting dataset, as a function of the departure from critical-
ity Ra/Rac−1. The horizontal error bars incorporate the fluctuations of the temper-
ature gradient during the run. The runs with gallium are for the lower Ra/Rac − 1,
on the left, while those for water have higher Ra/Rac − 1. The different symbols
are for different Ekman numbers. The top two graphs give the evolution of the
two components of velocity. For both liquids, velocities increase with the departure
from criticality and also increase when the Ekman number is decreased. For a given
Ra/Rac− 1, both ũr and uθ are clearly much higher in gallium than in water. While
it is expected to be zero in a purely viscous regime with no thermal wind, we always
measure a retrograde zonal velocity at radius rmax. Nonzero retrograde zonal veloc-
ities have been observed experimentally (Sumita and Olson, 2000), and numerically
(Cardin and Olson, 1994). This last study demonstrated that they could be explained
in terms of the Reynolds stresses that result from non-linear inertial effects. Our quan-
titative measurements of the average zonal velocity confirm this observation and show
that this effect is much larger in gallium. Cordero and Busse (1992) also invoked a
retrograde zonal flow to explain temperature measurements in water experiments very
close to the threshold of convection, in a narrow-gap configuration. They attributed
this velocity to thermal wind. We have seen before that it was certainly not the pre-
dominant driving mechanism for the large zonal velocities we observe. Moreover, in
experiments done in gallium, a weak prograde zonal flow has been observed at large
radius. This is not compatible with a thermal wind explanation, since it requires a
reverse temperature gradient to produce prograde zonal circulations.

The next two graphs deal with the dimensions of the convective cells. We first
examine the variation of the average radial dimension δr . For water at moderate
Rayleigh number, we note that δr decreases as the Ekman number decreases. This
is the expected behaviour, as size scales with E1/3 in the geostrophic viscous regime
that prevails at the onset of convection. However, we find that for the lowest Ekman
numbers in water, and for experiments in gallium (which provide the largest radial di-
mensions), the mean of the cell size distribution generally increases with the Rayleigh
number. This suggests that the size of the convective cells is no longer controlled by
a geostrophic viscous balance, but rather depends on non-linear effects that increase
when the Rayleigh number increases.

With our present set-up, we cannot access directly the dimension of the convective
cells in the azimuthal direction. However, from the spatio-temporal maps of the pre-
ceeding section, we measure the mean time ∆t elapsed between two zeros of the radial
velocity function. If a cell of lateral extent δθ drifts across the line of measurement
with an azimuthal velocity uθ, it will result in a time signal with 2∆t = δθ/uθ. In
water, we observe that ∆t decreases when either E is decreased or Ra increased. For
gallium, ∆t is short as a consequence of the large zonal velocity. Later in this article,
we will try to single out the variation of δθ.

From the previous results, we derive the local convective Reynolds number : Rel =
ũrδr/ν. Its variation is plotted in the next graph of figure 9. The data show a regular
increase of the local Reynolds number with Ra/Rac for both water and gallium.
The striking observation is that the Reynolds number is much higher in the gallium
experiments, where it reaches 600, than in the water experiments, where 80 is the
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largest value, despite the fact that the Rayleigh number is much larger than Rac in
this case. This is of course due to the larger convective velocities observed in gallium,
together with the fact that the kinematic viscosity of gallium is about 3 times smaller
than that of water. If we were to use the thickness of the shell rather than δr in the
definition of the Reynolds number, we would reach values of 2000 for gallium and 250
in water. Therefore, we expect non-linear effects to be fully developped in gallium,
while they probably compete with viscous dissipation in water.
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ũ
r
|

R
e l

Rel

Figure 9: Scalar data (continued).

Since we anticipate that zonal velocities are caused by Reynolds stresses, we expect
that they increase as the Reynolds number increases. This is best seen by plotting the
ratio |uθ/ũr|, which is a dimensionless quantity, versus Rel. The results are shown in
the last graph of figure 9. While this ratio is less than 0.7 in the water experiments, it
reaches 2.5 in the gallium experiments, where the Reynolds number is the largest. The
results presented in this section demonstrate the interest of comparing the properties
of convection for liquids with different Prandtl numbers. The behaviour observed for
gallium, which has a low Prandtl number, with high Reynolds number and large zonal
velocities, strongly suggests that convection is dominated first by the Coriolis force
and second by non-linear inertial terms. In the next section, we perform a scaling
analysis to test this idea.
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Number Definition Experiment Earth’s core

Bu =
αgδT

ΩU
Busse < 0.1 < 10−2

Ro =
U

ΩD
Rossby < 10−2 ≈ 10−6

Table 4: Auxiliary dimensionless parameters justifying the QG approximation in the
experiment. δT is the order of magnitude for local temperature perturbations. Esti-
mates are given for the Earth’s core, using a typical velocity of 10−4 m/s (Jault et al.,
1988).

6 Scaling analysis.

In this section, we introduce quasigeostrophic equations and derive scaling relation-
ships for two different regimes: a viscous one and an inertial one. We then compare
the predictions of these two approaches to the measurements of the previous section.

The fluid shell is described under the Boussinesq approximation, obeying both
Navier-Stokes and heat equations, made dimensionless using D as length scale, D2/ν
as time scale, P∆T as temperature scale. A cylindrical frame er, eθ, ez is chosen.
The momentum and heat equations are:

∂u

∂t
+ (u · ∇) u + 2E−1ez × u = −E−1∇Π− Ra rerT +∇2u. (1)

∂T

∂t
+ (u · ∇)T = P−1∇2T. (2)

Here u is the fluid velocity, T is the temperature, Π is pressure (including contribution
from the gravity potential). Gravity grows linearly with the cylindrical radius r.
Equation (1) is subject to no-slip boundary conditions, and equation (2) satisfies
imposed temperatures on both the inner cylinder and the outer sphere.

Experimental facts strongly suggest that flow is quasigeostrophic (QG): it is colum-
nar, which means that the order of magnitude of inertia, buoyancy and viscosity are
small when compared to Coriolis force (balanced by a pressure gradient). This is
confirmed by the quantitative estimates of these ratios, which respectively give the
Rossby, Busse and Ekman numbers (see tables 2 and 4). A nonlinear QG model
has been derived by Cardin and Olson (1994), from the local marginal stability the-
ory of Busse (1970), under the following assumption: dissipation by friction through
the Ekman layers near the outer spherical boundary is neglected. Fields are then
expanded into powers of the Ekman number. To leading order a geostrophic bal-
ance exists between Coriolis force and the pressure gradient, which implies that flow
is two-dimensional at this order. This equilibrium alone cannot solve the problem
(geostrophic degeneracy), and to next order the equation governing the column-
averaged z-component ω of vorticity is:

dω

dt
− E−1 2

L

dL

dr
u · er = ∇2ω + Ra

∂T

∂θ
, (3)

where
L =

√
r2
e − r2
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is half the height of a fluid column, and dL/dr is thus the local slope of the exter-
nal boundary. Equation (3) averages the effect of the Coriolis force using the non-
penetration condition for velocity at sloping boundaries (Cardin and Olson, 1994).
This results in the ”vortex-stretching” term

2

L

dL

dr
u · er.

This term is found to be larger than Ekman-pumping induced circulation even for
fairly low dL/dr. Only in the case of purely zonal velocities (u · er = 0) will we need
to reintroduce Ekman circulation. This fact implies that dissipation in the interior of
the fluid will dominate dissipation in boundary layers at the scale of the convective
flow, and justifies the approximation mentioned above.

Equation (3) will be re-written in the following manner, which highlights its formal
analogy with the beta-plane equation used in geophysical fluid dynamics (Pedlosky,
1987):

dΛ

dt
= ∇2ω + Ra

∂T

∂θ
, (4)

we define Λ as the potential vorticity:

Λ = ω − 2

E
lnL.

Let ũ(r) and T̃ (r) be time-averaged standard deviations for the convective velocity
and temperature fluctuation, and δ(r) be the mean, time-averaged vortex size, as
functions of the cylindrical radius. In order to derive scaling relationships, we identify
two steps in the process of the evolution of the vorticity field.

First, the thermal instability produces lateral gradients of temperature, and this
results in the creation of vorticity. For instance, one rising plume gives birth to a
cyclone on its prograde side, and an anticyclone on its retrograde side. We therefore
write

dω

dt
∼ Ra∂T

∂θ
(5)

The fundamental assumption of this analysis is that later in time, structures of high
Rel evolve at constant potential vorticity. Under the influence of advection by rising
and falling radial currents, they exchange vorticity with the planetary vorticity field
2 lnL/E:

dΛ

dt
= 0⇒ dω

dt
∼ E−1 2

L

dL

dr
u · er (6)

The timescale of these phenomena is the vortex turnover time t:

t ∼ 1/ω ∼ δ/ũ (7)

On this timescale, structures of high Rel are indeed immune to viscosity, and therefore
do not lose potential vorticity. This inertial balance thus assumes that under the
influence of radial advection (Reynolds stresses), transfer of energy occurs between
the convective scale and the scale of energy dissipation (this will be made more precise,
see below).
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This results in a three-term balance

(5),(6) and (7) ⇒ ũ2

δ2
∼ Ra rT̃

δ
∼ E−1 2

L

dL

dr
ũ. (8)

One needs another equation to solve for ũ,T̃ and δ. It is provided by the Nusselt
number, which is the ratio of the total heat flux Qtot over the conductive heat flux:

Nu =
Qtot
Qconv

= 1 + uTP 2.

Since lateral temperature gradients create radial velocity, we assume that ũ and T̃ are
correlated, and therefore we approximate uT by ũT̃ . In the limit of high departures
from criticality Ra/Rac, we write:

Nu ∼ 1 + ũT̃ P 2 ∼ ũT̃ P 2. (9)

Solving (8) and (9) for the three variables yields the set of inertial scaling relations:

ũ ∼
(
r2/5f(r)1/5

) (RaQ
P 2

)2/5

E1/5

δ ∼
(
r1/5f(r)3/5

) (RaQ
P 2

)1/5

E3/5 f(r) =

(
2

L

dL

dr

)−1

=
r2
e − r2

2r

T̃ ∼
(
r−2/5f(r)−1/5

)
Nu

(
RaQP

3
)−2/5

E−1/5

(10)

where RaQ = Ra · Nu is the heat-flux based Rayleigh number. These relations
draw their interest from the fact that they depend on geophysically well-constrained
parameters. The set of equations (10) has been written by Cardin and Olson (1994),
and has been found to be in qualitative agreement with their experiments. It is
interesting to note that in this inertial scaling, diffusion constants ν and κ do not play
a role in the expressions for ũ and δ (Christensen, 2001). This becomes clear when
time is re-scaled using the container rotation time Ω−1 instead of the viscous diffusion
time. Let starred variables ũ∗ = ũE (which is the Rossby number), δ∗ = δ, T̃ ∗ = T̃ be
the variables in the new scaling. There appears a parameter γ = RaQE

3P−2, which
is independent of either diffusion constant. These constants only play a role in the
scaling for T̃ ∗, and the scaling relations write (dropping the r-dependence):

ũ∗ ∼ γ2/5

δ∗ ∼ γ1/5 γ =
αgQtot
ρCpΩ3D2

T̃ ∗PE−1 ∼ γ−2/5

(11)

We now return to the original definition of the non-dimensional time, since we will
also be interested in viscous effects. The previous scaling relations have indeed been
derived in the limit of high Reynolds numbers and high departures from criticality.
We investigate now the case when viscous effects are important, i.e. lower Reynolds
numbers. We expect then that the conservation of potential vorticity will hold only
on timescales of order of the viscous diffusion time, and (7) is replaced with:

dω

dt
∼ ∇2ω ⇒ t ∼ δ2 (12)

This yields another three-term balance:

(5),(6) and (12) ⇒ ũ

δ3
=
Ra rT̃

δ
= E−1 2

L

dL

dr
ũ. (13)
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Solving (13) and (9) for the three variables yields the set of viscous scaling relations:

ũ ∼
(
r1/2f(r)1/3

) (RaQ
P 2

)1/2

E1/3

δ ∼
(
f(r)1/3

)
E1/3

T̃ ∼
(
r−1/2f(r)−1/3

)
Nu

(
RaQP

3
)−1/2

E−1/3

(14)

The radial dependence of equations (10) and (14) predicts that velocity and vortex
size must decrease at increasing radius, due to the influence of the increasing slope
of the spherical boundary. This is the fundamental effect of the spherical geometry,
and it is in qualitative agreement with the radial profiles shown on figure 6. We now
factor out the r-dependence and turn to the scaling of variables picked up at rmax.

For quantitative validation by laboratory experiments some adaptations towards
moderate Ra/Rac are necessary. In that case, Rac has to be substracted fromRa since
it represents a part of buoyancy unavailable for generation of motion. The scaling
parameter therefore has to be Ra−Rac instead of Ra. The rest of the analysis above
is valid if Nu−1 replaces Nu. Moreover, in order to convert Ra into RaQ, we need an
estimate of Nu, since it is not measured in our experiments. The exact relationship
is not crucial however, since variations of Nu−1 are not dramatic when compared to
those of Ra/Rac − 1. For experiments done in water, Sumita and Olson (2000) have
obtained Nu ∼ (Ra/Rac)

1/2 in the parameter range we use, a value in agreement
with calculations of Tilgner and Busse (1997) with P = 10. For the water case we
will use this relation. For experiments done in liquid gallium, since the departure
from criticality is not high, we will use a constant Nusselt number.

Figure 10 presents the test of a viscous, and inertial balance on the radial velocity
data. While the inertial scaling adequately fits the data for both liquids, the viscous
scaling is accurate only for experiments in water up to a value of Ra/Rac of order 10,
and inaccurate for experiments in gallium. These conclusions are confirmed when we
scale the mean of the radial cell size distribution, using the results for δ (Figure 11).
A viscous scaling adequately describes the evolution of δr in water, where, once the
E dependance has been removed, no significant increase is observed with Ra/Rac.
Only an inertial scaling can describe the increase of δr with Ra/Rac in liquid gallium.
However, this test is less significant than the previous one, because of the broadness
of cell size distribution, and the low dynamics (less than one decade) of its variations.
The evolution of the temperature fluctuations with the parameters (not shown) is also
in good agreement with the predictions of the inertial model.

At the scale of the convection flow, the QG model with no dissipation at the spher-
ical external boundary is thus accurate. Kinetic energy created by buoyancy is partly
dissipated in water (inertial and viscous terms are of the same order of magnitude),
and little dissipation takes place in gallium. One efficient dissipative mechanism of
kinetic energy remains available in this latter case: zonal flow is not subject to any
forced vertical circulation that prevents friction on the external boundary. We there-
fore suspect that kinetic energy is transported from the scale of convective flow to the
scale of the container through Reynolds stresses.

An equation for the time-averaged zonal velocity uθ can be deduced by averaging
the θ-component of equation (1):

(u · ∇)uθ + 2E−1ez × u · eθ = −E−1∇Π · eθ +∇2uθ.
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. Prefactor is 1.5 .
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If we assume ergodicity, which seems to be realized by zonal flow, and identify the
time-average with the θ-average, then ∇Π · eθ identically vanishes. We also have

2E−1ez × u · eθ = 2E−1ur.

ur can be expressed through the Ekman circulation formula (Greenspan, 1968):

ur =
E1/2

2L
√

n · ez
uθ

Where n is the normal to the spherical boundary. The time averaged θ-component of
equation (1) finally writes:

(u · ∇)uθ +
E−1/2

L
√

n · ez
uθ = ∇2uθ. (15)

Far from the inner cylinder, Ekman friction dominates dissipation in the interior
of the fluid and equilibrates with Reynolds stresses. Closer to the inner cylinder, a
passive boundary layer can set up where the viscous drag from the interior of the fluid
equilibrates Ekman friction. Therefore the predominant source of energy is Reynolds
stresses, and the predominant sink of energy is Ekman friction on the outer boundary.
This is the behavior of a large-gap configuration, and would not be true in a small-gap
case (Plaut and Busse, 2001). The balance, from which we factor out, as usual, the
r-dependence, writes:

ur
∂uθ
∂r
∼ E−1/2

L
√

n · ez
uθ ⇒ ũ2

δr
∼ uθ
E1/2

. (16)

The nonvanishing nonlinear coupling term is indeed the rθ component of Reynolds
stress, and it has been estimated as ũ2/δr , assuming that a constant degree of correla-
tion exists between ur and uθ over the range covered by experiments. A justification

25



for this can be found in the principle of potential vorticity conservation: due to this
principle, rising currents have a tendancy to turn into anticyclones. The excess of
negative vorticity induces a retrograde zonal circulation which is well correlated with
the radial flow. This interpretation also predicts that the energy contained into the
zonal flow cannot be significantly higher than the energy contained into the radial
flow. The degree of correlation has therefore to decrease as the zonal flow becomes
too high.

Variations of δr with controlling parameters are not very significant in the range
of experiments (δr is always of order 1), and therefore we keep δr ∼ 1 in equation
(16). Since zonal flow results from inertial effects, inertial scaling has to be adopted
for ũ. The resulting formula writes:

uθ ∼
(
RaQ
P 2

)4/5

E9/10. (17)

This scaling is tested on figure 12, and yields a prefactor 1. Only data points cor-
responding to sufficiently developed convection are kept. The data for uθ are more
scattered than for ũr, but the agreement with equation (17) is still good. This test
highlights the importance of Ekman layers near the spherical boundary for the deter-
mination of zonal flow.
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Figure 12: Reduced zonal flow velocity. Black line is y ∼ ((Nu− 1)(Ra/Rac − 1))
4/5

in water and y ∼ (Ra/Rac − 1)
4/5

in gallium. Scaling prefactor is 1.

This last point clearly shows the adequation of an interpretation of zonal flow
in terms of Reynolds stresses. Zonal velocities observed in water are not important,
because kinetic energy is partly dissipated at the convective scale. In gallium they
take part in the only efficient dissipative mechanism left, and this explains their rapid
growth as the convective instability injects more energy into the system.

A condition for the inertial regime can be established, by comparing the orders of
magnitude of dissipation through Ekman friction of the zonal flow, and dissipation
at the convective scale. The former can be estimated as uθ

2/E1/2 and the latter as
ũ2/δ2. Either inertial or viscous scaling predicts that δ is not smaller than E1/3 and
therefore the condition writes:

uθ
2

ũ2
> E1/6
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and this yields (the fractional power of E is approximated for simplification):

RaQ
P 2

E3/2 > 1 (18)

Equation (18) is satisfied by gallium experiments, for which left-hand side of (18)
is at least 30. For water experiments this term is of order 10−2 for experiments at
E = 9.7 10−6 near the onset, and reaches values of order 1 for the more supercritical
experiments at E = 2.4 10−6. This confirms that the inertial regime is attained only
for the lower E experiments in water, and for all experiments in gallium.

Having proposed a mechanism for the zonal velocities, we come back to an inter-
pretation of the measurements of ∆t, the average time between zeros of the radial
velocity profiles, in terms of the average azimuthal size of the vortices δθ . We have

δθ = 2uθ∆t.

The factor 2 is used because ∆t, as it is defined, describes half a period. δθ is plotted
on figure 13, with error bars corresponding to the standard deviation of lateral size
distribution. Here zonal flow velocity is determined using theoretical scaling relations.
Therefore only data points corresponding to sufficiently developped flows have been
kept. Horizontal lines are predicted sizes of vortices at convection onset. Here again,
the scaling proposed for δ in the previous section correctly describes the order of
magnitude and variations of δθ within the error bars, and the increase in size predicted
by the inertial scaling is effective only for high Rel experiments. An aspect ratio δr/δθ
can be estimated, and is of order 1 at high Rel (compare figure 13 with the third
graph in figure 8). In the inertial regime, cells generally tend to grow with increasing
Ra/Rac, and can become larger than cells at convection onset.
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Figure 13: Lateral size of vortices at radius rmax, near the inner cylinder.

7 Discussion

We have shown that thermal convection in water and gallium exhibits properties that
can well be accounted for by the inertial model we have derived. The use of two
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liquids with very different Prandtl numbers was essential to discriminate between the
inertial and the viscous models.

Our measurements enable us to show that the typical local Reynolds number is
much larger in the gallium experiments than in water. The most striking consequence
of these high Reynolds numbers for gallium is the apparition of large zonal veloci-
ties, well explained by Reynolds stresses in the framework of our inertial model. By
combining the expression for the local Reynolds number

Rel = ũδr ∼
(
RaQ
P 2

)3/5

E4/5,

and those for the zonal and convective velocities, we obtain

uθ/ũr ∼ Re2/3
l E1/6.

As expected, this ratio is controlled almost entirely by the Reynolds number. The
2/3 slope is in good agreement with the data (dashed line in figure 9).

We emphasize that, in the inertial regime, there is no efficient dissipation mech-
anism at convective scale, and therefore kinetic energy created by buoyancy has to
cascade to larger scales where dissipation takes place by shear of zonal flow on bound-
aries. The energy flow towards large scales is the classical mechanism invoked in 2D
turbulence. While in a plane layer, this mechanism leads to the apparition of struc-
tures as large as the container (Sommeria, 1986), in the spherical geometry only zonal
motions are permitted at this scale. The large zonal velocities we measure in gallium
are reminiscent of the observations of Grote et al. (2000) for a numerical model of
convection with a stress-free outer boundary. These authors report a strong inter-
mittency as the zonal flow tends to wipe out the convective structures from which it
draws its strength. In our experiments, we found no evidence for this mechanism. It
is probably due to the fact that zonal velocities in our case are limited by friction on
the Ekman layers of the outer boundary, while only viscosity in the interior of the
shell can control the amplitude of the zonal flow in the numerical model.

The adequation of an explanation of experiments based on the model by Cardin
and Olson (1994) reasserts the interest of a two-dimensional approach. However,
their model did not take Ekman friction of zonal flow on the external boundary
into account. This represents an easy improvement, after which it will be possible
to compare convective structures determined numerically and experimentally. Using
more ultrasonic transducers, it should be possible indeed to construct a local map
of convective structures, and investigate the radial and zonal geometry of convective
vortices.

Our results also bear some relevance to the geodynamo problem. Recent numerical
models (Christensen et al., 1998) have shown that dynamo action can take place in a
spherical shell when thermal convection is only a few times critical. The mechanism
is of α2-type, meaning that the conversion of poloidal to toroidal magnetic field, and
vice-versa, is done by vortices at the convective scale. In the Earth, it is believed
that the conversion of poloidal to toroidal field is due to an ω effect, i.e. zonal flow.
Our observations suggest that for sufficiently low Ekman numbers and high Reynolds
numbers, this zonal flow will be naturally produced by the convective engine.

Although all these results apply to a non-magnetic case, we think it is of some
interest to extrapolate them to the parameters of the core. We use E = 10−14 and
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Variable Value
Rel 106

Re 108

ũ 10−3 m/s
δr , δθ 10 km
uθ 10−2 m/s

Table 5: Values for the Earth’s core deduced from inertial scaling.

P = 1, both estimated using parameters in table 2. The heat-flux based Rayleigh
number can be expressed as:

RaQ =
αgQtotD

2

kκν
.

From an upper bound for the total heat flux emerging at the Core- Mantle Boundary
(CMB) Qtot = 10 TW (Labrosse et al., 1997), we infer RaQ = 1030. The condition
(18) for the inertial regime is satisfied, and therefore the inertial scaling is chosen to
derive the core estimates of convective velocity, cell size, Reynolds number and zonal
flow which are summarized in table 5. The local Reynolds number is very high and
indicates a strongly turbulent state. The global Reynolds number is of the same or-
der of magnitude as the estimate made in the introduction. Convective flow velocities
(10−3 m/s) are ten times larger than CMB estimates, of order 10−4 m/s (Hulot et al.,
1990), obtained from secular variations of the magnetic field. The ratio of zonal over
convective velocity yields the value 10, while estimates based on geophysical observa-
tions (Jault et al., 1988) lead to zonal velocities lower than convective velocities. As
we have seen in the scaling analysis, this ratio is very likely to saturate at a value of
order 1 (Christensen, 2001), even though we have not observed it. A too strong zonal
flow would indeed suppress convection by mixing plumes. Developed QG turbulence
should favor large structures, but still the influence of vortex stretching results in very
small typical cell sizes.

The kind of flow described by these parameters would not be very efficient in
maintaining a magnetic field: the essential part of kinetic energy, which is in zonal
flow, is lost for dynamo action. The first effects of the addition of a magnetic field on
this configuration would be to enlarge structures and slow down velocities, especially
zonal velocity (Brito et al., 1995). This will be checked in future experiments in the
presence of an azimuthal magnetic field.
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Appendix: Notes on experiments and data processing.

Experimental procedure.

For the acquisition of one experimental record, the sphere is spun up to the desired
speed, and the thermal regulation system is then turned on and tuned to the desired
gradient. Then we wait until spin-up is complete (3 mn), until thermal equilibrium
is reached at boundaries (10 mn), until convection pattern is statistically stationary
(depends on the departure from criticality, but typically 30 mn). Then recording is
started.

Structure and resolution of recordings.

One velocity profile is a set of 224 (water) and 130 (gallium) velocity points covering
a distance of respectively 83.6 and 92.8 mm. The effective resolution is therefore 0.37
mm (water) and 0.71 mm (gallium). In fact the real resolution is lower because one
ultrasonic burst is composed of eight cycles. The Doppler apparatus then overlaps
measurement windows of respective sizes 0.37 × 8 = 2.96 mm and 0.71 × 8 = 5.68
mm, to recover the aforementioned effective resolution. Some care has been taken on
this point in figures 6 and 7, where squares denote real measurement points, and the
solid line represents the profile obtained at effective resolution.

N = 4096 complete radial velocity profiles are acquired, at a sampling rate be-
tween 6 and 18 profiles per second. This represents roughly one tenth of the viscous
dissipation time D2/ν. The actual time resolution is lower because of averaging for
noise reduction. Typical averaging is done over 10 profiles, using a median filter, and
this lowers the time step to some 0.5 seconds. Also recorded meanwhile are 4096
complete velocity profiles on the lateral probe.

Temperature perturbation signals are recorded at a sample rate of 3 to 6 samples
per second. The imposed temperature gradient is recorded using thermo-resistive
platinum probes. The temperature gradient has to be corrected by some 15 percent
temperature drop in lexan when experimenting with water.

Extracted scalar data and error bars.

Scalars are extracted from filtered signals. Let N be the number of profiles, and ui(r)
an individual profile. The mean velocity is

u(r) =
1

N

∑

i

ui(r),

and the standard deviation of velocity

ũ(r) =

√
1

N

∑

i

(ui(r)− u(r))2.

Error bars on ũr and uθ account for the reproductibility of measurements, and of
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the uncertainty due to seeding particles centrifugation (see retrieval of zonal flow).
Error bars on δr , δθ and ∆t are the standard deviations δ̃r , δ̃θ and ∆̃t of the size
distributions. An example histogram of size distribution is shown on figure 14.
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Figure 14: Histogram of the distribution of radial cell sizes in the convective flow,
measured at radius 60 mm in water, for experiment of figure 4.3 (Ekman number is
4.8 10−6, Rayleigh number is 26.6 times critical).

Retrieval of mean zonal flow velocity.

The mean velocity umes measured on the lateral probe can be expressed in the system
of local axes of figure 2 as a function of mean radial and zonal flow velocities ur and
uθ:

umes = ur cos(α+ θ) + uθ sin(α+ θ).

The convention of positive radial velocity directed inwards has been used here. Hence

uθ =
umes

sin(α+ θ)
− ur cot(α+ θ).

For a purely convective flow ur averages out. In the case of the experiment some
care has to be taken on this point, since ur is slightly different from zero due to
centrifugation/centripetation of seeding particles. Therefore it has to be corrected
here.

The unknown is the angle θ. if r denotes the distance on the lateral probe since
the beam entered the fluid, and R the radius of the fluid sphere, some algebra yields:

sin θ =
sinα√

1− 2 cosα
R

r
+

(
R

r

)2

α remains to be determined. The beam enters the solid sphere at an angle 40o
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Medium vP (m/s)
water 1500 (at 20o C)

liq. gallium a 2873 (at 30o C)
lexan b 2340 ± 190

copper b 5040 ± 350

Table 6: Compressional ultrasonic wave velocities vP in media used in the experiment.
a: Beyer and Ring (1972); b: this study.

and is then refracted at the liquid interface such that:

sin(α) =
vP (liq)

vP (sol)
sin(40o)

where vP stands for the compressional ultrasonic wave velocity of the considered
media. Using the values listed in table 6, this gives α = 24.3±1.5o for experiments in
water, and α = 21.5±1.5o in gallium. This corresponds to a minimal distance to inner
cylinder of d = 5 ± 3 mm in water and d = 1 ± 3 mm in gallium. The uncertainties
are of the same importance as the size of the Doppler measurement volume, and they
affect the horizontal position of plots in figure 7.
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