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Abstract. We have demonstrated experimentally
the existence of inertial waves in a slowly precessing
spheroid of fluid. Although such oscillatory internal
shear layers have been predicted theoretically and nu-
merically, previous precession experiments had shown
no evidence of their presence. Using an ultrasonic
Doppler velocimetry technique, profiles of radial veloc-
ity have been measured in our precession experiment.
Comparison of these profiles with their synthetic coun-
terparts obtained numerically, proves the presence of
the predicted internal shear layers. They are emitted
from the breakdown of the Ekman layer at the two crit-
ical latitudes of the fluid (around 30° and —30°) and
propagate through the entire volume on conical sur-
faces. The asymptotic laws for these oscillatory lay-
ers, confirmed experimentally and numerically, lead us
to predict an oscillatory flow of 107 m/s along such
characteristic cones in the Earth’s fluid outer core.

Introduction

The Earth’s outer core is a conducting liquid with its
dynamics significantly determined by the fact that it is
a rapidly rotating fluid, contained in a quasi-spheroidal,
relatively rigid mantle. While modelling the real Earth
will introduce complexities into the dynamical response
of the core to external perturbations, it is important to
understand the core’s most basic hydrodynamical be-
haviour first. The laboratory evidence of inertial waves
in a precessing spheroid reported here is just such a
fundamental property of a contained, rotating fluid.

A primary result in the theory of rotating, barotropic
fluids is the existence of characteristic surfaces (cones)
along which small disturbances may propagate [Greenspan,
1968]. Oscillatory shear layers will develop along con-
ical directions in a contained rotating fluid, when the
boundary is perturbed. More specifically, critical lat-
itudes exist on the sphere (and more generally on a
spheroid) where the boundary layers thicken signifi-
cantly [Stewartson and Roberts, 1963]. In the experi-
ment described below, the boundary of the container is
slowly precessed as seen by an observer rotating with
the fluid. The critical latitudes attached to the fluid



then become the source of conical shear layers which
penetrate the fluid interior [Kerswell, 1995]. Following
Greenspan [1968], these oblique shear layers are identi-
fied as an inertial wave.

While our technique of measurement of the fluid ve-
locity (Doppler ultrasonic method) clearly shows the in-
ternal shear layers in the precession experiments, obser-
vations of reflected light in this experiment and earlier
versions of it using both flakes [Malkus, 1968] and dyes
[Vanyo et al., 1995; Vanyo and Dunn, 2000], did not re-
veal them. Indeed, in only two related experiments con-
cerned mainly with inertial modes [Greenspan, 1968;
McEwan, 1970], were the characteristic cones observed
(for a review on inertial modes, see [Aldridge, 1997])

The precession experiment

We use a spheroidal cavity whose dimensions are
given in Figure 1; its oblateness is n = (a—¢)/a = 1/25.
The Doppler measurements were obtained with a rota-
tion rate of the container w, = 212 =+ 0.02 rpm im-
posed by a brushless motor. With water as the working
fluid (kinematic viscosity, v ~ 1.1 107° m?/s) and the
above experimental parameters, the Ekman number is
E =v/wea? ~3.17 1075, The container is put on a ro-
tating table which imposes a retrograde precession rate
Q_;, varying from 0.1 to 10 rpm while the axis of rotation
of the container itself makes an angle & = 20° with the
vertical (see [Noir, 2000] for details).

In Noir [2000], flakes (Kalliroscope) have been used to
visualise the flow. For example in Figure 2, some parts
of the flow were observed using that technique: the il-
luminated parts of the picture correspond to coherent
orientation of the flakes associated with an axisymmet-
ric shear. We note the central brightness around the
fluid axis of rotation which is tilted from the axis of
rotation of the container ., as predicted by linear the-
ory [Busse, 1968] and measured through different tech-
niques [Vanyo et al., 1995; Noir, 2000]. The bright
bands on both side of the Figure are associated with
geostrophic motions first measured in Malkus [1968].
They are explained by a nonlinear process in the singu-
larity of the boundary layer at critical latitudes. Here,
as expected, we have no evidence of oblique shear layers
with this visualisation technique.

A Doppler velocimetry method was used to measure
the velocity field associated with the inertial wave. This
method is based on the shift in frequency of ultrasonic
pulses reflected by moving particles (here, conifer pollen
spores that are neutrally buoyant) in the fluid. Cal-
ibration and validation of this Doppler method have
been performed in Brito et al. [2001] through quanti-



tative tests. The ultrasonic probe fixed in the precess-
ing frame, points towards the center of the spheroid as
shown in Figure 1. This configuration enables us to
measure radial velocity along the ultrasonic beam.

Such measurements for different angular velocities of
the precessing table are reported in Figure 3. Each
experimental curve (solid line) is the average of 1000
profiles of radial velocity done every 25 ms. Note that
the position of the probe in the upper hole has been
chosen to minimise the measured velocity at the center
of the spheroid for Q, = —3 rpm and remained the
same for the other precessing rates. Note also that the
spatial resolution is better than 3 mm in radius, and the
divergence of the beam is 5° corresponding to a lateral
resolution increasing from 5 mm to 25 mm along the
shooting direction.

The velocities measured in Figure 3 are stationary
in time. Clearly evident is a spatial oscillation along
a diameter of the spheroid, with velocities nearly anti-
symmetric with respect to the center of the spheroid.
Should we associate these features to the predicted in-
ertial wave?

Numerical model of precession

We used the numerical model developed in Noir et al.
[2001] to compute the expected flow in the laboratory
experiment. Briefly, this model solves the momentum
equation for an incompressible fluid of viscosity v en-
closed in a spherical container of radius R. The sphere
is spinning with a frequency w. around k_; , and pre-
cessing at €2, around k;, . Units of length and time are
chosen as R and w; ! respectively. We write the mo-
mentum equation in a reference frame attached to the
solid-body rotation & x 7 of the fluid precessing at €2,.
Including the centrifugal force in the reduced pressure
©, the momentum equation for @ is written:

g—;‘ + 2Pk, + &) x @ + (Pkp x @) x 7

+(@-V)i = —Ve + EV?i,

where P is the Poincaré number defined as Q,/w.. No-
slip and no-penetration boundary conditions are used
at r=1.

Figure 4 shows the three components of velocity in
the plane ((.D',k_;) in the frame attached to the solid-
body rotation of the fluid for £ = 3.16 107% and P =
—1.8 10~*. For this low value of the Poincaré number,
geostrophic motions are very weak and cannot be seen
in the figure.

In Noir et al. [2001], it is shown that the amplitude
of the inertial wave scales as e¢E'/5 where ¢ = |& —



k_;| is the forcing associated with differential rotation
between the fluid and the boundary. In the range of
parameters of our experiment, it can also be shown that
€ is proportional to sin # where 3 is the angle between
@ and k. [Busse, 1968].

For the Ekman number of the computation shown
in Figure 4, the size (or wavelength) of the inertial
wave which scales as EY5 [Kerswell, 1995] is large
(~ R/3) and asymptotic features, such as character-
istic cones, are difficult to appreciate. Lower values of
the Ekman number clearly show this asymptotic be-
havior (see [Noir et al., 2001]). Oscillating shear layers
emerge around critical latitudes at § = +£30° with re-
spect to the axis of rotation of the fluid. We see the
singularity of the Ekman layer at that latitude in the
ug, ug velocity contours in Figure 4, which generates
a radial flow in and out from this region. The shear
propagates inside the fluid along characteristic conical
surfaces, symmetric about the axis of rotation of the
fluid with a semi-angle of 30°. These inertial waves
are time dependent with a pulsation w in the frame at-
tached to the solid-body rotation of the fluid. They are
stationary in the precessing frame, in particular on the
axis of rotation of the spheroid k_; where the ultrasonic
experimental probe is attached.

Comparison

The source of the inertial wave is a local phenomenon:
the ellipticity of the container is not crucial as long as
the oblateness 7 is small compared to the size of the
eruption of the boundary layer (E'/®). Since this condi-
tion is met in the present experiment, we can compare
the numerical calculations (from the spherical model)
with the experimental data measured in the spheroidal
container.

First, we consider only the inertial wave component
part of the flow in Figure 4 (¢ wavenumber m=1). Sec-
ond, let us consider a colatitude angle § with respect
to the axis of rotation of the fluid & (vertical axis in
Figure 4): along this angle, we can extract a profile of
radial velocity. Note that a change in § will change
the shape of the profile. Third, in order to obtain
the amplitude of the synthetic profile for a given co-
latitude 3, we use the asymptotic scaling sin BE/5 as
proposed in the previous section. We have therefore
A(r)/A*(r) = sin §/sin 8* where A denotes the ampli-
tude of the synthetic inertial wave and the star stands
for the numerical calculation. The calculation in Figure
4 gives sin §* = 0.016. Note that we have neglected the
Ekman number dependency in the relation given above
as the two F numbers are equal. The last step is then



to find the colatitude 8 which best explains the experi-
mental data in shape and in amplitude, and compare it
with independent estimations of 3.

As seen in Figure 3 where we have represented both
the experimental and numerical profiles, we find 8 =
3°, 8°, 17° for Q, = —2, —3, —4 rpm respectively. We
compare these determinations of # both to their eval-
uations in the experiments through visualization and
pressure measurements which give 7° 4+ 5°, 11° £ 5°
and 20° £ 5° respectively, and to the asymptotic results
[Busse, 1968] which give 5.6°, 9.8° and 17° respectively.

Note that the asymmetry between the first and sec-
ond half of each profile in Figure 3 is explained by the di-
vergence of the ultrasonic beam mentioned earlier. The
numerical profiles reproduce this asymmetry when av-
eraging over a sampling volume that increases along the
diameter.

The excellent agreement between experimental and
numerical profiles demonstrates unambiguously that the
spheroidal precessing container induces oblique internal
shear layers in the fluid. Figure 3 also checks experi-
mentally the asymptotic scaling laws for the amplitude
of the velocity eE1/% and the size E/5 of this inertial
wave. An experimental verification of the Ekman num-
ber dependency of the scaling laws needs experiments at
different w., although it will be difficult to check the 1/5
exponent with the decade in Ekman numbers accessible
experimentally here. Finally, this study shows that it is
legitimate to compare a spherical numerical calculation
with our spheroidal experimental work, regarding local
phenomena such as these oblique or geostrophic shear
layers (see [Noir et al., 2001]).

Discussion

Why do flakes not see inertial waves?

There i1s no evidence of conical features with the
flakes technique, even though we know that this tech-
nique is very sensitive to velocity shear. The flakes
need a transient time to align in the shear, which one
can estimate as the inverse of the shear rates. Using
figure 3, the maximum shear rate is (Au/Ad)max =~
(50 mm/s) /(30 mm) which gives a transient time equal
to at least 0.6 s. Since the period of the inertial wave is
0.28 s, it seems reasonable to conclude that flakes have
no time to line up in the internal shear layers.

Application to the Earth’s Core

Both the numerical studies and the present experi-
mental work enable us to propose the law 1.5 ¢ E'/® R w,
(in dimensional units) for the maximum amplitude of



the radial velocity of the inertial wave induced by the
precession of the outer boundary of a spheroid. Using
€ =1.710"% and E = 107'®, we find that the inertial
wave in the outer core associated with the precession
of the Earth correspond to a diurnal oscillation of the
fluid of amplitude 6 107° m/s on a width of 20 km. This
is smaller than the stationary geostrophic motion pre-
dicted at 3 1075 m/s using a law 0.011 ¢ E=3/10 R o,
as proposed in Noir et al. [2001]. If we ignore both the
action of the magnetic field and possible destabilisation
of this flow (turbulence, viscous or elliptical instabili-
ties, ...), these values could be used for direct detection
of motions in the Earth’s core excited by the luni-solar
precession.

Acknowledgments. Financial support for the exper-
imental set-up came from the Région Rhone-Alpes and
CNRS/INSU. We wish to thank the University Joseph Fourier
for inviting Prof. K. Aldridge and also thank H.C. Nataf,

D. Jault and J.P. Masson for useful discussions.

References

Aldridge, K.D., Perspectives on Cores Dynamics from Lab-
oratory Experiments, in Farth’s Deep Interior, edited by
D. J. Crossley, pp. 65-78, 1997.

Brito D., Nataf H.-C., Cardin P., Aubert J. and Masson J.-
P., Ultrasonic Doppler velocimetry in liquid gallium, in
press in Fzp. Fluids, 2001.

Busse F. H., Steady fluid flow in a precessing spheroidal
shell, J. Fluid Mech., 33, 739-751, 1968.

Greenspan, H. P. The theory of rotating fluids, 325 pp.,
Cambridge University Press, U.K., 1968.

Kerswell, R. R., On the internal shear layers spawned by the
critical regions in oscillatory Ekman boundary layers, J.
Fluid Mech., 298, 311-325, 1995.

McEwan, A. D., Inertial oscillations in a rotating fluid cylin-
der, J. Fluid Mech., 40, 603-640, 1970.

Malkus, W. V. R., Precession of the Earth as the Cause of
Geomagnetism, Science, 160, 259-264, 1968.

Noir, J., Ecoulements d’un fluide dans une cavité en préces-
sion. Ph. D. thesis, 163pp., Université Grenoble 1, France,
November 2000.

Noir J., Jault D. and Ph. Cardin, Numerical study of the
motions within a precessing sphere, at low Ekman num-
ber, in press in J. Fluid Mech., 2001.

Stewartson K. and P. H. Roberts, On the motion of a liquid
in a spheroidal cavity of a precessing rigid body, J. Fluid
Mech., 17, 1-20, 1963.

Vanyo J., Wilde P., Cardin P. and P. Olson, Experiments
on precessing flows in the Earth’s liquid core, Geophys. J.
Int., 121, 136-142, 1995.

Vanyo J. P. and J. R. Dunn, Core precession: flow structures
and energy, Geophys. J. Int., 142, 409-425, 2000.



J. Noir, D. Brito and Ph. Cardin, LGIT, Université
Joseph Fourier, CNRS, BP 53, 38000 Grenoble, France. (e-
mail: philippe.cardin@ujf-grenoble.fr)

K. Aldridge, Centre for Research in Earth and Space
Science, York University, 4700 Keele Street, Toronto,
Ontario, M3J 1P3, Canada. (e-mail: keith@yorku.ca)

(Received )

1On sabbatical leave from York University, Toronto, Canada.



—

\ O,
Ultrasonic m

Plexiglass

Figure 1. The spheroidal cavity is cut in a plexiglass
cylinder (shaded area). Dimensions are in mm. An ul-
trasonic probe of diameter 8 mm is introduced without
contact in the upper hole (10 mm in diameter) of the
spheroid. Gravity g is indicated for reference.

Figure 1. The spheroidal cavity is cut in a plexiglass cylinder (shaded area). Dimensions are in mm. An
ultrasonic probe of diameter 8 mm is introduced without contact in the upper hole (10 mm in diameter) of the
spheroid. Gravity g is indicated for reference.

Figure 2. Photograph of flakes in the spheroidal cavity
for a = 20°, w, = 300 rpm and ©, = —3 rpm. Bright
bands show the shear associated with both the axis of
rotation of the fluid and geostrophic motions.

Figure 2. Photograph of flakes in the spheroidal cavity for o = 20°, w, = 300 rpm and €, = —3 rpm. Bright
bands show the shear associated with both the axis of rotation of the fluid and geostrophic motions.
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Figure 3. Measured profiles of radial velocity (solid
lines) obtained from Doppler ultrasonic velocimetry for
a = 20°, w, = 212 rpm and three precessing rates €2,.
The vertical bars give the standard deviation of velocity.
Dashed lines are velocity profiles deduced from figure 4
with the best value of the colatitude g fitting the data.

Figure 3. Measured profiles of radial velocity (solid lines) obtained from Doppler ultrasonic velocimetry for
a = 20° w, = 212 rpm and three precessing rates €,. The vertical bars give the standard deviation of velocity.
Dashed lines are velocity profiles deduced from figure 4 with the best value of the colatitude 5 fitting the data.
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Figure 4. The three spherical components u,, ug,
uy of the precessing flow in a sphere in the merid-

ional plane containing k. and &. E = 3.16 107° and
P = —1.8 10~*. Contour intervals du, maxima and
minima are indicated on each figure. Solid (dashed)
lines: positive (negative) values. Dotted line: zero iso-
contour line.

Figure 4. The three spherical components u,, ug, ugs of the precessing flow in a sphere in the meridional plane

containing k.and @. E =3.16 10=% and P = —1.8 10~*. Contour intervals du, maxima and minima are indicated
on each figure. Solid (dashed) lines: positive (negative) values. Dotted line: zero isocontour line.
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