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Direct and inverse pumping in flows with homogeneous and non-homogeneous swirl
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The conditions in which meridional recirculations appear in swirling flows above a fixed wall are
analysed. In the classical Bodewädt problem, where the swirl tends towards an asymptotic value
away from the wall, the well-known

"tea-cup effect" drives a flow away from the plate at the centre of the vortex. Simple dimensional
arguments applied to a single vortex show that if the intensity of the swirl decreases away from
the wall, the sense of the recirculation can be inverted, and that the associated flow rate scales
with the swirl gradient. If the flow is quasi-2D, the classical tea-cup effect takes place. This basic
theory is confirmed by numerical simulations of a square array of steady, electrically driven vortices.
Experiments in the turbulent regimes of the same configuration reveal that these mechanisms are
active in the average flow and in its fluctuating part. These mechanisms provide an explanation for
previously observed phenomena in electrolyte flows. They also put forward a possible mechanism
for the generation of helicity in flows close to two-dimensionality, which plays a key role in the
transition between 2D and 3D turbulence.

PACS numbers: 47.32.-y Vortex dynamics, rotating fluids

47.27.nd Turbulence: Channel flow

47.65.-d Magnetohydrodynamics and electrohydrodynamics

INTRODUCTION

The teacup effect is one of the mechanisms actively
mixing sugar in a cup of tea when stirring it with a spoon.
Under the effect of rotation, a centripetal pressure gradi-
ent builds up in the fluid to oppose the centrifugal force.
In the boundary layer near the bottom of the cup, the
flow is slow so the centrifugal force collapses and the same
pressure gradient drives a convergent flow towards the
centre of the cup. This feeds the meridional recirculation
that is actually responsible for mixing (this configura-
tion is that of the Bodewädt problem). The configura-
tion where a solid wall rotates under a still fluid (Ekman
problem) leads to a reversed meridional flow for the same
reasons [1, 2].
This type of mechanism is at play in a number of less
anecdotal processes, both industrial and natural, such as
the stirring of liquid metals (in the Bridgeman process
to grow silicone crystals for example [3]) or the genera-
tion of cyclones, where it controls the redistribution of
momentum, heat or chemicals in the flow. It is particu-
larly important in experiments aiming to reproduce 2D
turbulence or to understand the transition between 2D
and 3D turbulence [4, 5]: the authors of Refs. [6, 7]
recently discovered that the appearance of a third ve-
locity component played a role in the break-down of the
inverse energy cascade of 2D turbulence, and was there-
fore central to understanding this transition. Recent nu-
merical simulations [8] were able to link the existence
of the inverse cascade to the presence of helicity even
in 3D turbulence. Since the teacup effect is precisely
a source of helicity linked to the presence of a bottom
wall, it most likely plays an important role in the tran-

sition between 2D and 3D turbulence dynamics. The
authors of Ref. [9] attempted to suppress it by inserting
a "buffer" fluid layer between the container wall and the
layer of fluid where turbulence was forced, only to dis-
cover that secondary flows still subsisted. Their presence
was attributed to confinement itself but also to the non-
homogeneity of the forcing, which consisted of passing
an electric current through the fluid layer (a conductive
electrolyte), placed over an array of magnets of alternate
polarity. The nature of these recirculations was not the
focus of this particular paper but it can be seen from their
results that pumping in this configuration was inverse,
with the fluid diving to the centre of vortices in the core
of the flow, whereas in homogeneously forced flows be-
tween two planes, direct pumping is expected as in the
teacup effect [10]. Thus, although the teacup effect is
well understood, the conditions in which secondary flows
appear and simply which way they flow is not yet clear.
In this paper, we put forward a mechanism to explain
how either direct or inverse pumping arises, depending
on the homogeneity of the forcing. This scenario is tested
against numerical simulations and experiments on a flow
of liquid metal between two parallel planes distant of H ,
subject to a transverse magnetic field Bez and where
the flow is driven by injecting electric current at one of
the walls. This setup offers a convenient way to con-
trol the homogeneity of the forcing, because for strong
magnetic fields, the Lorentz force diffuses momentum
across the fluid layer [11]. When inertia is present, it
opposes this effect and diffusion is only achieved over a
finite length lz ∼ l⊥N

1/2, where the interaction parame-
ter N = σB2l⊥/(ρU) represents the ratio of the Lorentz
force to inertia (l⊥, U , ρ and σ are the the size of the
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swirling structure across B, its azimuthal velocity, the
density and electric conductivity of the fluid). For high
magnetic fields lz/H >> 1 and so momentum diffusion
across the channel is effective enough to make the flow
quasi-2D. If, on the other hand , lz/H < 1 or lz/H ∼ 1,
then inertia and momentum diffusion are of the same or-
der and 3D velocity variations are present [12].

GOVERNING EQUATIONS

The velocity and pressure fields u and p of an incom-
pressible flow of a fluid of density ρ, viscosity ν are gov-
erned by the Navier-Stokes and continuity equations:

(∂t + u · ∇)u+
1

ρ
∇p = ν∇2

u+ f , (1)

∇ · u = 0. (2)

To illustrate the phenomena of direct and inverse pump-
ing, we shall rely on the example of electrically forced
flows. The principle is to apply an externally gener-
ated, homogeneous magnetic field Bez to an electrically
conducting fluid and to inject electric current in one
or several points of an otherwise electrically insulating
wall orthogonal to ez (here at z = 0). At each such
electrode, the Lorentz force creates a vortex spinning
around ez that extends all the further in the core as B is
high [12, 13]. Assuming the magnetic Reynolds number
Rm = µσUL remains small (U,L are typical velocities
and length and µ is the magnetic permeability of vac-
uum.), then the magnetic field associated to the current
J within the fluid is negligible compared to B, and the
Lorentz force to which the flow is subjected expresses as
f = Bρ−1

J × ez [14]. J is coupled to u through Ohm’s
law and charge conservation:

J = σ(−∇φ+Bu× ez), (3)

∇ · J = 0, (4)

where φ is the electric potential. The generic geometry is
that of a channel with no-slip, impermeable and electri-
cally insulating walls located at z = 0 and z = H . The
flow is governed by two non-dimensional parameters: the
Hartmann number Ha = BH

√

σ/(ρν) and the Reynolds
number Re0 = Γ/ν. Γ = I/(2π

√
σρν) is the circulation

that would be induced around an electrode, in the plane
just outside the Hartmann boundary layer at z = 0, by
injecting a DC current of intensity I through it, if no
viscous dissipation was present [12, 13]. Ha2 represents
the ratio of Lorentz to viscous forces but Ha and Re0

can be thought of as non-dimensional measures of B and
I respectively. Thus, Ha controls the momentum diffu-
sion along B and so decreasing it incurs steeper velocity
gradients along ez in the core of the flow, and increases
the inhomogeneity of the swirl.

NUMERICAL SYSTEM

In the numerical simulations, the fluid is confined in
a rectangular box of size L2 × H with L = 0.06 m
and H = 0.1 m. The working fluid is GaInSn, an eu-
tectic alloy of Gallium Indium and Tin, of conductivity
σ = 3.6×106 Ω−1.m−1, viscosity ν = 4×10−7 m2.s−1 and
density ρ = 6.4 × 103 kg.m−3. The container is placed
in a uniform magnetic field Bez so that besides the two
Hartmann walls orthogonal to it, there are also four walls
parallel to it. All walls are impermeable, no slip and elec-
trically insulating. The flow is driven by injecting a DC
current of alternate polarity through a square array of 6
× 6 electrodes of diameter 1 mm, mounted flush at the
bottom wall, spaced by distance Li = 0.01 cm.
The code is based on the finite volumes method imple-
mented in the OpenFOAM framework and solves the
three-dimensional, time-dependent equations in a segre-
gated way. The numerical scheme is the consistent and
conservative algorithm put forward in Ref. [15]. The
code is described and fully tested in the more complex
configuration of the flow around a 3D obstacle in Ref.
[16]. To summarise it, the spatial discretisation is of sec-
ond order, the time-scheme is a second order implicit
pressure-velocity formulation and the pressure-velocity
coupling is solved with the PISO algorithm implemented
as in Ref. [17]. The time step is chosen so that the
maximum Courant number C = U∆t/∆x is well below
1 and the maximum of D = ν∆t/∆x2 remains below
10 (Courant-Friedrich-Lewy conditions). Collocated and
structured meshes made of 1 917 971 and 4 227 768 rect-
angular elements are respectively used for simulations at
Ha = 800 and Ha = 1822. In order to keep the mesh
orthogonal, the electrodes, which are circular in the ex-
periment, are modelled by squares of size 1 mm. The
mesh is regular outside of the boundary layers and re-
fined near the walls so as to always keep 4 points across
the Hartmann layers and 3 points across the Shercliff lay-
ers.
For each value of Ha, the flow is initially at rest and the
lowest current is injected. In all computations presented
here, the flow stabilised into a steady state, which was
used as initial condition for the simulation at the same
Ha, for the next value of Re0 up.

MECHANISMS OF INVERSE AND DIRECT

PUMPING

We shall first illustrate the basic mechanism of inverse
pumping on the example of a steady flow in the con-
figuration described in the previous section. Figure 1
shows the pressure contours and streamlines obtained at
Ha = 1.822 × 103 and Re0 = 171. These are typical
of the flow patterns obtained for other parameters. The
flow consists of a square lattice of 6× 6 vortices rotating
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0.17

−1/2

0

0 1/2 x/Li

z/H

FIG. 1. Streamlines of (ux, uz) in the plane y = Li/2, in-
tercepting the axis of rotation of two vortices and contours
of pressure (colours). Pressure is normalised by ρu2

M where
uM = max{uy(x, z)} is the maximum azimuthal velocity
within any given vortex in the vessel. Downward vertical
jets occur right in the region of lowest pressure at the cen-
tre of vortices at x = ±Li/2. The fluid domain extends
over (x/Li, y/Li, z/H) ∈ [−3, 3]2 × [0, 1], but only the region
[−1, 1]× {1/2} × [0, 0.17] is represented here.

along ez with alternate spin. A strong downward flow
exists at the centre of each of them that loops back up
in the outer part of the vortices. To illustrate the under-
lying mechanism, we shall reason on a single vortex of
radius l⊥, with associated polar coordinates centred on
it (r2 = (x + Li/2)

2 + (y − Li/2)
2, and the radial and

azimuthal velocity in this vortex respectively correspond
to ux and uy in the plane y = Li/2, on figure 1). The
pressure contours in figure 1 and vertical profiles of p and
uz (figure 2, left) show that the downward jet coincides
with a strong pressure gradient. Plots of the different
terms in (1)·ez (figure 2 , right) show that the latter is
only opposed by viscous friction:

∂zp ∼ −ρν
uz

l2
⊥

. (5)

The pressure drop at the centre of the vortex results from
the centripetal pressure gradient that opposes the cen-
trifugal force:

p(r = 0, z)− p(r = l⊥, z) ∼ −ρu2

θ(r = l⊥, z). (6)
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FIG. 2. Left: profiles of pressure and velocity in the
plane y/Li = 1/2, along the columnar vortex centred at
(x/Li, y/Li) = (−1/2, 1/2). Right: variations of the different
terms in (1)·ez along the axis of rotation of the same vor-
tex. The vertical pressure gradient balances lateral viscous
friction to a good approximation in the core. Velocities, pres-
sure, horizontal and z coordinates marked q̃ were respectively
normalised by uM = max{uy(x, z)}, ρu

2

M , Li and H .

Contours of p on figure 1 suggest that the pressure gra-
dient outside of the vortex ∂zp(l⊥, z) is negligible. The
maximum uM

z of uz(0, z) is located at z = z0, near the
bottom wall, but still outside the boundary layer (see
figure 2, left) and can be estimated from (5) and (6):

uz(0, z0)

uθ(l⊥, z0)
∼ Re∇, (7)

where Re∇ = 2∂zuθ(l⊥, z0)l
2

⊥
/ν is a Reynolds number

built on the vertical gradient of the swirl. Eq. (7) ex-
presses that vertical motion is driven by the inhomogene-
ity of the swirl. Mass conservation requires that the flow
impacting the wall must turn radially:

ur(z0) ∼ − l⊥
2hr

uz(0, z0) ∼ −uo
θ

l⊥
2hr

Re∇, (8)

where, uo
θ = uθ(l⊥, z0), hr is the height over which the

return flow takes place, typically of the same order as l⊥
in all simulations.
Unlike inverse pumping, direct pumping is driven in the

wall boundary layer by the radial pressure gradient that
builds up in the core to oppose the centrifugal force (6).
If δ is the boundary layer thickness, (1)·ez implies that
the pressure cannot vary across it and so the radial pres-
sure gradient there is the same as in the core. Since uθ
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becomes small in the boundary layer, so does the centrifu-
gal force ρu2

θ/r. Hence, (1)·er there expresses that in the
boundary layer, the centripetal pressure gradient is bal-
anced by viscous friction. If inverse pumping is present,
however, the associated radial flow in the core, expressed
by (8), considerably enhances radial friction ν∂2

zzur in the
boundary layer. Denoting quantities within the bound-
ary layer with a superscript b, it comes that

∂rp
b ∼ −ρν

δ2
(ub

r − ur(z0)), (9)

and from (6) and (8),

ub
r

uo
θ

∼ − l⊥
2hr

Re∇ −
(

δ

l⊥

)2

Re, (10)

where, unlike Re0, the Reynolds number Re = uo
θl⊥/ν

is based on uo
θ, a measured quantity. For direct pump-

ing to exist, the flow must be directed radially inwards
within the boundary layer. When ∂zuθ < 0, as in the
case studied here, this imposes the condition:

|∂zuθ| <
(

δ

l⊥

)2
hr

l⊥

∣

∣

∣

∣

uo
θ

l⊥

∣

∣

∣

∣

. (11)

In all numerical simulations, hr was typically of the order
of l⊥. Boundary layers are thin, so l⊥/δ >> 1 (in electri-
cally driven flows, the wall boundary layer is a Hartmann
layer, with thickness δ/H = Ha−1, so l⊥/δ ∼ Ha). Since
the flow is quasi-2D as soon as ∂zu = O(δ/l⊥) outside the
boundary layer, rather than an exact criterion on |∂zuθ|
for the appearance of inverse pumping, (11) mainly ex-
presses that inverse pumping can only exist when the
swirl is quasi-2D. This result explains why direct pump-
ing was never observed in any of our simulations: in all
numerically accessible regimes, the inhomogeneity of the
swirl was always sufficient to drive inverse pumping. Sim-
ilarly, in the wall-bounded electrolytes layers studied by
Ref. [18], vortices were driven by imposing an electric
current in the field created by permanent magnets placed
underneath the layer. The swirl inhomogeneity resulted
directly from that of the magnetic field and so ∂zuθ and
uθ/H were of the same order, making it impossible for
(11) to be satisfied. It is therefore not surprising that
inverse pumping was observed in this case too.
In quasi-2D flows, by contrast, Re∇ ≃ 0 and from (10)
and (2), direct pumping drives a flow from the boundary
layer into the core:

uz

uo
θ

∼ 2

(

δ

l⊥

)3

Re. (12)

In electrically driven flows, δ = H/Ha and scaling (12)
coincides with the expression derived by Ref. [19] from
matched asymptotics. Ref.[13] provides a clear example
of direct pumping in a large electrically driven vortex
confined in a cylindrical vessel of diameter 12 cm filled

with a layer of mercury of thickness H = 1.92 cm, placed
in axial homogeneous magnetic field of 0. In these con-
ditions, the ratio of magnetic diffusion length lz to H
was much larger than unity (typically between 102 and
6×102 ) and so the flow was indeed quasi-2D, as required
by condition (11). The numerical simulations of Ref.[20]
together with the measurements of radial profiles of az-
imuthal velocity confirmed that direct pumping in this
case scaled as (12).
We shall conclude this theoretical section with two more
remarks: firstly, it should be noticed that should the swirl
be inhomogeneous in such a way that ∂z |uθ| > 0, then
direct pumping would occur, but uz would still scale as
in (7). Secondly, (11) provides a criterion for the exis-
tence of direct Bodewädt pumping, not a criterion for
the disappearance of inverse pumping. In theory, one
could imagine a flow that would be quasi-2D to a pre-
cision of O(δ/H)2 and therefore with direct pumping,
but with a residual three-dimensionality of higher order,
which would suffice to drive a faint inverse pumping at
the same time. More realistically, |∂zuθ| may vary along
ez, in such a way that it can satisfy (11) in the vicinity
of at least one of the walls but not everywhere. The cor-
responding secondary flow could then feature a complex
succession of recirculations in any direction. One such
example shall be found in turbulent flows (section ).

INVERSE PUMPING IN THE SQUARE VORTEX

ARRAY

Numerical simulations of the vortex array present spe-
cific features that differ from those of an isolated vortex,
on which the theory is based. Despite this difference,
figure 3 shows that the vertical velocity uz(z0) within a
single vortex in the array linearly increases with Re∇.
Scaling (7), is thus still satisfied, albeit with a reason-
able amount of data scattering. This scattering can be
partly attributed to the plotted values being local ones,
and partly to interaction between vortices. Most im-
portantly, data obtained for different values of Ha col-
lapse on the same line, which confirms Re∇ as the single
relevant parameter for inverse pumping. This stresses
that it is the gradient of swirl that determines inverse
pumping, not how this gradient is generated, electro-
magnetically or in any other way. Furthermore, all sim-
ulated cases involve strongly inhomogeneous swirl, with
∂z|uθ| & |uθ|/H and exhibit inverse pumping, and no di-
rect pumping, in agreement with condition (11) too.
Unlike when isolated, vortices embedded in an array un-
dergo a strong influence from neighbouring vortices. In
an infinitely extended square array, this would mainly
translate into a loss of axisymmetry of individual vor-
tices, with streamlines progressively deforming to a
square shape, away from the vortex cores. In our numeri-
cal simulations, by contrast, the 6×6 array is bounded by
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FIG. 3. Scaled maximum vertical velocity vs. Re∇, from
numerical simulations of the 6×6 vortex array in steady state
(Re∇ gives a measure of the gradient of swirl along ez). Re∇

was calculated with l⊥ = Li/4.

lateral walls. These incur significant friction on periph-
eral structures, which are consequently weaker, and less
influent than those near the centre. As a consequence,
the upper part of the vortex axes is slightly diverted away
from the centre, instead of being straight. Nevertheless,
as vortices are driven by injecting current from the bot-
tom wall, they remain attached to the electrodes in this
region, and the effect of the imbalance between centre
and peripheral vortices becomes more visible away from
the bottom wall (This can be noticed in figure 1). A
second property of vortex arrays is that radial flows in-
duced in neighbouring vortices by inverse pumping col-
lide to form a strong return flow that spirals up in the
region between vortices (This pattern is reflected in the
vertical jet at x = 0 in the streamlines of (ux, uz) in fig-
ure 1). When Re0 is increased, these phenomena become
more pronounced, and at Re0 = 171 (for Ha = 800) and
Re0 = 512 (for Ha = 1822), recirculations merge in the
upper part of the vessel, to the point where they cannot
be distinguished from each other anymore.

DIRECT AND INVERSE PUMPING IN

TURBULENT FLOWS

We shall now illustrate the occurrence of inverse pump-
ing in more complex flows, such as turbulent flows. Since
the corresponding regimes lie beyond the reach of nu-
merical simulations, these shall be analysed experimen-
tally. The experimental setup closely matches the config-
uration of the numerical simulations with one difference:
the dimensions of the vessel across the magnetic field are
L × L = 0.1m×0.1m instead of L × L = 0.06m×0.06m.
The distance between electrodes where the current is in-

jected can be set to Li = 0.01m (as in the numerical
simulations) or Li = 0.03m. A full description of the rig
can be found in [12, 21]. Since the influence of the walls
becomes more pronounced when Li/L increases, the nu-
merical simulations present an intermediate case between
the two injections scales available in the experiment. For
the purpose of this work, the rig was equipped with ultra-
sound sensor-transducers fitted flush in the top wall and
in one of the lateral walls, connected either to a DOP1000
or a DOP3010 ultrasound velocimeter, manufactured by
SIGNAL PROCESSING. Ultrasound velocimetry is the
method of choice to obtain instantaneous velocity pro-
files in opaque fluids and is now well developed for liq-
uid metal flows [22, 23]. These probes provide instanta-
neous profiles of uz along ez at (x, y) = (−1.5cm, 1.5cm)
(probe V1, aligned with a current injection electrode),
as well as 5 horizontal profiles of ux along ex at z ∈
{0.12H, 0.31H, 0.5H, 0.69H, 0.88H} (probes H1
to H5), also halfway between two electrodes. This gives
us access to the variations of horizontal velocity. The
signals were reliable up to resolutions of 15Hz and 2mm.
In subsequent experiments, a constant current is injected
in a fluid initially at rest and all results presented there-
after are obtained when the flow has reached a statisti-
cally steady state. The flow is in a turbulent state, where
fluctuations exceed the intensity of the average flow.

Figure 4 shows the time-averaged profiles of
uz(−1.5cm, 1.5cm, z) obtained from probe V1, and
ux(0, 0, z) from probes H1 to H5, as well as the RMS of
the fluctuations of these quantities (respectively denoted
as 〈·〉 and 〈·′2〉1/2). For Li/H = 0.1, Ha = 1.0932× 104

and Re0 = 2.488× 104, the average and the fluctuations
of the swirl are clearly 3D, as |ux(z)| noticeably decreases
away from the bottom wall. Inverse pumping is present
in the lower half of the vessel, in agreement with the
prediction of (11). The general shape of profile 〈uz(z)〉
qualitatively follows (7), in the sense that 〈uz(z)〉 is more
intense where the gradient of swirl is stronger. Further-
more, faint direct pumping can be noticed in the vicinity
of the upper plate (with the flow directed away from the
plate, see insert in figure 4). This local effect takes place
in a region where both the swirl and its vertical gradi-
ent are weak. Over a short range of values of z, between
the regions of direct and inverse pumping, uz(z) becomes
slightly positive, suggesting that a counter-rotating "con-
necting" recirculation is present between the co-rotating
recirculations associated to direct and inverse pumping.
The profile of fluctuations does not provide the direction
of the vertical fluctuating flow, but still shows it is strong.
Its intensity is stronger in regions of stronger vertical gra-
dients of 〈ux(0, 0, z)

′2〉1/2, which suggests that it is also
driven by the inverse pumping mechanism.
For Li/H = 0.3, Ha = 7.288×103 and Re0 = 3.11×103,
larger, slower vortices are more sensitive to momentum
diffusion by the Lorentz force and the flow is correspond-
ingly closer to quasi two-dimensionality. Plots of horizon-
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obtained by ultrasound velocimetry. Average velocities
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′2〉1/2}). Dash: vertical velocity, dia-

monds: value of ux (average and fluctuations) measured at
(x/H, y/H, z/H) = (0, 0, z/H), dash-dot: order 3 polyno-
mial fit for ux, top: Ha = 1.0932 × 104, Re0 = 2.488 × 104,
Li/H = 0.1, bottom: Ha = 7.288 × 103, Re0 = 3.11 × 103,
Li/H = 0.3. The insert in the upper left graph represents a
magnification of the profiles in the vicinity of the upper blind
zone, stressing the existence of a small zone where uz > 0.

tal velocity in figure 4 show that the average flow never-
theless still displays the trace of the forcing, with veloci-
ties that are highest near the bottom wall, high near the
top wall (because of the strong electric current present
in the top Hartmann layer) and weaker in the middle,
where inertial effects take away energy of the main flow
(The mechanisms governing three-dimensionality in wall
bounded MHD flows are analysed in detail in [12]). Re-
markably, this small three-dimensionality in the horizon-
tal velocity profiles is sufficient to drive inverse pumping

in the vicinity of both top an bottom walls and supersede
direct Bodewädt pumping, in line with our theoretical
prediction that direct pumping can only occur in quasi-
2D flows. The profile of 〈ux(0, 0, z)

′2〉1/2 is practically
quadratic and symmetric with respect to z/H = 1/2.
The maximum intensity of the fluctuations of horizontal
velocity corresponds to the minimum of those of the av-
erage, from which they draw energy (near z/H = 1/2).
This phenomenon, called "Barrel effect", was first pre-
dicted theoretically [19], then found numerically [24] and
was recently shown to act as a general mechanism of ap-
pearance of three-dimensionality in wall bounded flows
[25]. These measurements constitute the first experi-
mental observation of this effect. The vertical velocity
is strongly fluctuating too, but the low value of the gra-
dients of 〈ux(0, 0, z)

′2〉1/2 does not allow us to conclude
as to whether the fluctuations correspond to direct or
inverse pumping in this case.

CONCLUSION

Theory, numerical simulations and experiments concur
to show that direct recirculations can be inverted (or
reinforced) when velocity gradients appear in the third
direction. This phenomenon does not only take place in
steady vortices but also in fluctuating structures, which
raises the question of its relevance to fluctuations at the
different scales of turbulent flows. The appearance or
the inversion of secondary flows in turbulent structures
indeed provide mechanisms to create helicity or to
reverse its sign. Since the sense of the energy cascade
is tightly linked to signed helicity [8], they could play
an important role in the transition between direct and
inverse energy cascades. Nevertheless, our early experi-
mental observations of turbulent flows show that inverse
pumping combines with other effects to drive complex
flow patterns with an helicity that can change sign along
the transverse direction in a far from straightforward way.
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